

Marietta City Schools

Grade & Course: 9-12 Chemistry

Topic: Thermochemistry, Kinetics, and Equilibrium

Duration: 7 weeks

Georgia Standards and Content:

SC2. Obtain, evaluate, and communicate information about the chemical and physical properties of matter resulting from the ability of atoms to form bonds.

g. Develop a model to illustrate the release or absorption of energy (endothermic or exothermic) from a chemical reaction system depends upon the changes in total bond energy.

SC4. Obtain, evaluate, and communicate information about how to refine the design of a chemical system by applying engineering principles to manipulate the factors that affect a chemical reaction.

a. Plan and carry out an investigation to provide evidence of the effects of changing concentration, temperature, and pressure on chemical reactions. (Clarification statement: Pressure should not be tested experimentally.)

b. Construct an argument using collision theory and transition state theory to explain the role of activation energy in chemical reactions. (Clarification statement: Reaction coordinate diagrams could be used to visualize graphically changes in energy (direction flow and quantity) during the progress of a chemical reaction.)

c. Construct an explanation of the effects of a catalyst on chemical reactions and apply it to everyday examples.

d. Refine the design of a chemical system by altering the conditions that would change forward and reverse reaction rates and the amount of products at equilibrium.(Clarification statement: Emphasis is on the application of LeChatelier's principle.)

SC5. Obtain, evaluate, and communicate information about the Kinetic Molecular Theory to model atomic and molecular motion in chemical and physical processes.

a. Plan and carry out an investigation to calculate the amount of heat absorbed or released by chemical or physical processes. (Clarification statement: Calculation of the enthalpy, heat change, and Hess's Law are addressed in this element.)

b. Construct an explanation using a heating curve as evidence of the effects of energy and intermolecular forces on phase changes.

Narrative / Background Information

Prior Student Knowledge: (REFLECTION – PRIOR TO TEACHING THE UNIT)

SPS6b. Plan and carry out investigations to determine how temperature, surface area, and agitation affect the rate solutes dissolve in a specific solvent.

SPS7b. Plan and carry out investigations to describe how molecular motion relates to thermal energy changes in terms of conduction, convection, and radiation.

SPS7c. Analyze and interpret specific heat data to justify the selection of a material for a practical application (e.g., insulators and cooking vessels).

SPS7d. Analyze and interpret data to explain the flow of energy during phase changes using heating/cooling curves.

Year-Long Anchoring Phenomena: (LEARNING PROCESS)

Changes to the measurement of chemicals added to Flint Michigan's water supply created dangerous levels of lead contamination in the drinking water.

Unit Phenomena (LEARNING PROCESS)

Luminescent chemical reactions release energy as photons creating mesmerizing glows and vivid colors that are often observed in fireflies and marine organisms and utilized in forensic investigations.

MYP Inquiry Statement:

Chemical reactions are governed by the energy changes and feasibility of the reactions and the factors that influence the speed and outcome of diverse chemical transformations.

MYP Global Context:

Globalization and Sustainability

Approaches to Learning Skills:

- Communication skills
- Social skills
- Self Management skills
- Research skills
- Thinking skills

Disciplinary Core Ideas: (KNOWLEDGE & SKILLS)

- Heat
- Endothermic
- Exothermic
- Enthalpy
- Heat Change
- Hess' Law

Crosscutting Concepts: (KNOWLEDGE & SKILLS)

- Systems and System Models
- Energy and Matter
- Stability and Change
- Cause and Effect
- е

Phase Changes **MYP Key and Related Concepts:** Heating Curves • Systems • Reaction Rates Change Collision Theory • Transition State Theory Activation Energy Related Concept(s) • Changing Reaction Rates Models Catalysts • Energy • Forward Reaction Movement Reverse Reaction Function • LeChatelier's Principle • Conditions • Evidence • Consequences • Transfer Possible Preconceptions/Misconceptions: (REFLECTION – PRIOR TO TEACHING THE UNIT) Heat is not the same as temperature Exothermic does not mean the reaction is "cold" • Endothermic does not mean the reaction is "hot" • The reaction is the system and everything else is the surroundings • Catalysts are not consumed in a reaction •

- Catalysts are not always biological
- Catalysts does not alter the starting energy or ending energy of chemicals
- A reaction can be reversible

Key Vocabulary: (KNOWLEDGE & SKILLS)

Endothermic Exothermic Temperature Pressure **Collision Theory** Transition State Theory (can also introduce "intermediate") Activation energy Reaction coordinate Catalyst Energy **Reaction Rate** LeChatelier's Equilibrium Heat Enthalpy (including diagrams) (calculation via calorimetry and Hess' Law, no calculation of bond energy) Standard enthalpy of Formation Hess's Law Heating Curve Calorie Joule Specific heat Calorimeter Phase change Heat of vaporization Heat of fusion

Inquiry Questions:

Thermochemistry:

Factual: What is the specific heat capacity of water?

Conceptual: How does the specific heat capacity of water influence the amount of heat absorbed or released during a chemical

or physical process involving water?

Debatable: To what extent does the unique value of water's specific heat capacity contribute to its role as a vital regulator of Earth's climate, and how might variations in this property impact ecological systems and global climate patterns?

Kinetics/Equilibrium:

Factual: What factors influence the rate of a chemical reaction?

Conceptual: How does collision theory help us understand the relationship between molecular collisions and the rate of chemical reactions?

Debatable: To what extent do varying environmental conditions, such as temperature and pressure, impact the rate of chemical reactions, and how might the trade-offs between reaction efficiency and safety considerations influence decisions in industrial processes?

МҮР	Summative assessment		
Objectives	Summative assessment		
Sciences	Criterion A: Knowing and Ur Common Summative Criterion B: Inquiring and De Criterion C: Processing and P Common Laborator	ve Assessment esigning Evaluating	Relationship between summative assessment task(s) and statement of inquiry: Students will perform tasks and respond to assessment items that will gauge their mastery of reactions as required by the Georgia Standards of Excellence. Mastery of these concepts is necessary to move forward in our student of chemical behavior.
Unit Objectives			
Learning Activities and Experiences	Inquiry & Obtain: (LEARNING PROCESS)	Evaluate: (LEARNING PROCESS)	Communicate: (LEARNING PROCESS)
Weeks 1-4:	 Engage: Core Interactive Text: Thinking About Thermochemistry Image: After a long run, how can hot and cold therapies help your body recover? Image: How does an ice pack work? Image: What is happening to the energy of reactants and products of the chemical reactions that occur during a fireworks show? Explore: Core Interactive Text: How Do You Distinguish Between Exothermic and Endothermic Processes? Video: Energy is absorbed and released during physical and chemical energy. What 	Evaluate: • Common Formative Assessment • Common Summative Assessment	 Explain: Core Interactive Text: Explaining Thermochemistry Elaborate: Image: How does a refrigerator keep food cold? Video: How do air conditioners use a substance like Freon to cool air? Image: A concentrating solar power tower in Spain uses molten salts to capture the sun's energy. How could this process advance the solar power industry?

	are the characteristics of thermochemistry? • Video: Exothermic		
	 video. Exothermic reactions release stored 		
	chemical bond energy as		
	heat; endothermic reactions absorb heat from		
	surroundings and increase		
	the amount of stored		
	chemical energy. Where		
	does this energy go?		
	 Core Interactive Text: What is the relationship 		
	between a system and its		
	surroundings?		
	 Video: Exothermic and 		
	endothermic reactions,		
	respectively, release and absorb energy. How can you		
	tell whether a reaction will		
	be exothermic or		
	endothermic?		
	• Video: Calorimetry is the		
	study of measuring heat. How does the amount of		
	heat absorbed by an object		
	relate to the amount of heat		
	lost by its surroundings?		
	• Exploration: Use a		
	calorimeter to determine the specific heat of a metal.		
	What affects the specific		
	heat of the metal?		
	 Image: To start the 		
	exothermic chemical		
	reactions of a sparkler, a flame must first supply the		
	activation energy. Why is		
	the energy of the products		
	lower than the energy of		
	the reactants?		
Weeks 5-6:	Engage:	Evaluate:	Explain:
	 Core Interactive Text: Thinking about Reaction 	 Common Formative Assessment 	 Core Interactive Text: Explaining Reaction Rate
	Rate		Reaction Rate
	• Image: Why do we put our		Elaborate:
	food in the refrigerator?		 Video: Grain dust, a combination of
	 Image: How could the 		cornstarch and corn oil, is extremely
	chemical reaction responsible for fireworks be		flammable when it comes in contact with air. How do corn storage facilities
	sped up or slowed down?		take precautions against grain dust?
			 Video: What is NASA's
	Explore:		low-temperature oxidation catalyst
	Core Interactive Text:		used for?
	What factors influence reaction rate, and what is		
	their impact?		
	 Video: Many factors 		
	influence the rate of a		
	chemical reaction. What are the factors that affect		
	reaction rates?		

	• Video: External agents can act as catalysts that affect reaction rates. How do scientists and engineers use them to affect reaction rates for specific purposes?		
Week 7:	 Engage: Core Interactive Text: Life is a Balancing Act Explore: Core Interactive Text: How is Le Chatelier's Principle used to predict the effect of stress applies to a system at equilibrium? 	Evaluate: • Common Formative Assessment • Common Summative Assessment	 Explain: Core Interactive Text: Explaining Chemical Equilibrium Elaborate: Video: What factors can change a chemical system at equilibrium?

eflection: Considering the planning, process and impact of the inquiry				
Prior to teaching the unit	During teaching	After teaching the unit		
click here)	(click here)	(click here)		